Глава 2. Основные физико-химические законы и соотношения

2.1. Единицы физических величин

Для измерения однородных физических величин применяют различные системы единиц. Исторически метрическая система мер развивалась по отраслевому принципу.

2.2. Давление

Согласно молекулярно-кинетической теории давление находящегося в равновесии тела обуславливается средней кинетической энергией теплового движения молекул и средним их числом в единице объема. В ­технике давление рассматривается как отношение нормальной составляющей силы N к площади S, на которую действует сила

2.3. Температура

Температурой называется степень нагретости тела. В системе СИ за нуль шкалы принимается температура абсолютного нуля. Абсолютная шкала температуры начинается от абсолютного нуля и градуируется в Кельвинах (К), принятых за единицу температуры в СИ. На практике чаще всего температуру измеряют по международной 100-градусной (практической) шкале в градусах Цельсия (°С).

2.4. Объем, масса, плотность, удельный объем

Объем газов V измеряют в кубических метрах (м3). Вследствие того, что объем газов сильно изменяется при нагревании, охлаждении и сжатии, за его единицу принимают 1 м3 газа при нормальных условиях (температура—0С, давление —101,3 кПа).

2.5. Законы идеального газа

Закон Бойля - Мариотта устанавливает зависимость между абсолютным давлением и удельным объемом ν газа при постоянной температуре:

2.6. Смеси газов и жидкостей

Смесь идеальных газов, не вступающих в химические соединения, ведет себя как идеальный газ,а каждый входящий в смесь идеальный газ проявляет себя так, как если бы в ней не было других газов: распространяется по всему объему смеси и следует своему уравнению состояния.

2.7. Критические параметры газов

Критические температура и давление. Газы могут быть превращены в жидкость сжатием при условии, что температура не превышает определенного для каждого газа значения.

2.8. Отклонение реальных газов от идеального газа

Газовые законы справедливы только для идеального газа. В технических расчетах, связанных с реальными углеводородными газами, их применяют только в пределах давления до 0,2–,0 МПа (в зависимости от вида газа) и при температуре, превышающей 0С. При более высоком давлении или более низкой температуре либо применяют уравнения, учитывающие объем, занимаемый молекулами, и силы взаимодействия между ними, либо вводят в уравнения для идеального газа опытные поправочные коэффициенты —коэффициенты сжимаемости газа.

2.9. Упругость насыщенных паров

Чаще всего практическое использование сжиженных углеводородных газов происходит в двухфазной системе жидкость–пар (если есть свободная поверхность жидкости в замкнутом пространстве резервуара)..

При этом в общем случае происходит или конденсация пара, или испарение жидкости. В условиях равновесия нет ни конденсации, ни испарения. Давление, при котором жидкость находится в равновесном состоянии с паром, называется упругостью насыщенных паров.

Определенной температуре отвечает определенная упругость насыщенных паров, и наоборот, заданной упругости насыщенных паров отвечает определенная температура.

2.10. Удельные объем и плотноть жидкой и равновесной с ней паровой фаз

В табл. 2.6 приведены удельные объем и плотность жидкой и равновесной с ней паровой фазы для основных компонентов сжиженных газов (алканов).

2.11. Объемное расширение и сжимаемость жидких углеводородов

Жидкие углеводороды обладают высоким коэффициентом объемного расширения βp, который показывает относительное изменение объема при изменении температуры на 1С.

2.12. Влажность углеводородных газов и жидкостей. Гидратообразование

Все углеводородные газы в реальных условиях содержат водяной пар. Его количество при заданных температуре и давлении газа строго определенно.  Насыщение газов водяным паром возможно до предельного давления, равного упругости насыщенного пара при заданной температуре. Различают абсолютную и относительную влажность газов.

2.13. Точка росы

Насыщенные пары углеводородных газов при данных температуре и давлении находятся в точке росы. Если при постоянном давлении эти пары несколько охладить, некоторая часть их конденсируется. Изменение давления при постоянной температуре вызывает смещение равновесия фаз в ту или другую сторону, но двухфазная система всегда будет стремиться сохранить равновесие —состояние, характеризующееся насыщенностью паров.

2.14. Поверхностное натяжение

В двухфазных системах действуют силы, образующие т.н. свободную поверхность жидкости на границе раздела с газом. Работа, затраченная на образование 1 см2 поверхности раздела фаз, называется поверхностным натяжением. Единица измерения поверхностного натяжения — ньютон на метр (Н/м).

2.15. Летучесть (фугитивность)

Упругость паров отдельных компонентов увеличивается с ростом не только температуры, но и давления. Если при давлении до 1,0 МПа этот прирост невелик, то при высоких давлениях он становится ощутим, что позволяет сделать следующий вывод: упругость паров — функция не только температуры, но и давления

2.16. Теплопроводность

Распространение тепла без перемещения вещества (конвекции) и лучистого теплообмена называется теплопроводностью. Передача теплоты в неподвижной среде (жидкости, газе) происходит по закону Фурье:тепловой поток q пропорционален градиенту температуры:

2.17. Теплоемкость

Теплоемкость C — количество теплоты, необходимое для изменения температуры вещества на один градус. Единица теплоемкости в СИ — джоуль на кельвин (Дж/К).

2.18. Скрытая теплота превращений

Агрегатные переходы сопровождаются поглощением или выделением теплоты, называемой скрытой теплотой превращений (теплота испарения, теплота плавления, теплота сублимации). Скрытая теплота испарения (теплота конденсации) — количество теплоты, необходимое для испарения 1 кг или 1 кмоля жидкости при ее постоянной температуре. Скрытая теплота испарения в основном зависит от вида жидкости, температуры.

2.19. Внутренняя энергия, энтальпия, энтропия

С точки зрения молекулярно-кинетической теории внутренняя энергия составляется из кинетической энергии всех частиц (молекул, атомов), потенциальной энергии взаимодействия молекул и энергии колебательного движения атомов (т. н. нулевой энергии). Внутренняя энергия есть функция состояния, зависящая от температуры и давления, а для идеального газа — только от температуры (в этом случае потенциальной энергией взаимодействия пренебрегают).