2.4. Объем, масса, плотность, удельный объем

Объем газов V измеряют в кубических метрах (м3). Вследствие того, что объем газов сильно изменяется при нагревании, охлаждении и сжатии, за его единицу принимают 1 м3 газа при нормальных условиях (температура—0С, давление —101,3 кПа).
Для указанных условий определяют основные характеристики газов и выполняются теплотехнические расчеты. При учете расхода газов для коммерческого (финансового) расчета за единицу объема принимают 1 м3 при стандартных условиях (температура —20С, давление —101,3 кПа,влажность —0%).

Зависимость между объемом при нормальных и стандартных условиях:

Vo = V [273/(273 + t)][(Рб + ри)/101,3] = 2,695V (рабс/T)

V20 = V0 (273 + 20)/273 = 1,073 V0

где V — объем газа, м3, измеренный при рабочих условиях; V0 — то же, м3, при нормальных условиях; V20 — то же, м3, при t = 20С и р = 101,3 кПа.

Любой газ способен неограниченно расширяться. Следовательно, знание объема, который занимает газ, недостаточно для определения его массы, так как в любом объеме, целиком заполненном газом, его масса может быть различной.

Масса —мера вещества какого-либо тела (жидкости, газа) в состоянии покоя; скалярная величина, характеризующая инерционные и гравитационные свойства тела. Единица массы в СИ —килограмм (кг).

Плотность , или масса единицы объема, обозначаемая буквой ρ, —отношение массы тела m, кг, к его объему, V, м3

р = m/V

или с учетом химической формулы газа:

р = m/Vм = М/22,4

где М —молекулярная масса (см. табл. 2.3). Единица плотности в СИ —килограмм на кубический метр (кг/м3).

Зная состав газовой смеси и плотность ее компонентов, определяем по правилу смешения среднюю плотность смеси:

Рсм =(P1V1 + P2V2 + ... + PnVn)/100

где P1, P2...Pn — плотность компонентов газового топлива, кг/м3; V1, V2...Vn — содержание компонентов, объем в %.

Величину, обратную плотности, называют удельным, или массовым,объемом Vуд и измеряют в кубических метрах на килограмм (м3/кг). В практике часто, чтобы показать, на сколько 1 м3 газа легче или тяжелее 1 м3 воздуха, пользуются понятием относительная плотность d —отношение плотности газа к плотности воздуха:

d = р/1,293 или d = М/(22,4х1,293)

Таблица 2.3. Основные характеристики некоторых газов, входящих в состав углеводородных газов, и их продуктов сгорания.

Показатель Азот Воздух Водяной пар Диоксид углерода Кислород Водород Оксид углерода Метан
Химическая формула N2 H2O CO2 O2 H2 CO CH4
Молекулярная масса М 28,013 28,960 18,016 44,011 32,000 2,016 28,011 16,043
Молярный объем VM, м3/кмоль 22,395 22,398 22,405 22,262 22,393 22,425 22,400 22,38
Плотность газовой фазы, кг/м3;
при 0°С и 101,3 кПа ρП0 1,251 1,293 0,804 1,977 1,429 0,090 1,250 0,717
при 20°С и 101,3 кПа ρП20 1,166 1,205 0,750 1,842 1,331 0,0837 1,165 0,668
Плотность жидкой фазы, кг/м3, при 0 °С и 101,3 кПа ρЖо 0,416
Относительная плотность газа dn 0,9675 1,000 0,6219 1,529 1,105 0,0695 0,9667 0,5544
Удельная газовая постоянная R, Дж/(кг•К) 296,65 281,53 452,57 185,26 259,7 4122,2 291,1 518,04
Температура, °С, при 101,3 кПа:
кипения tкиn -195,8 -195 100 -78,5 -183 -253 -192 -161
плавления tпл -210 -213 0 -56,5 -219 -259 -205 -182,5
Температура критическая tкрит, °C -146,8 -139,2 374,3 31,84 -118,4 -240,2 -140 -82,5
Давление критическое ркр, МПа 3,35 3,84 22,56 7,53 5,01 1,28 3,45 4,58
Теплота плавления Qпл, кДж/кг 25,62 190,26 13,86 173,40 33,60 255,80
Теплота сгорания, МДж/м3:
высшая Qв 12,80 12,68 39,93
низшая Qн 10,83 12,68 35,76
Теплота сгорания, МДж/кг:
высшая Qв 141,90 10,09 55,56
низшая Qн 120,10 10,09 50,08
Число Воббе, МДж/м3;
высшее WoB 48,49 12,90 53,30
низшее WoH 41,03 12,9 48,23
Удельная теплоемкость газа сг, кДж/(кг•°С), при О °С и:
постоянном давлении ср 1,042 1,008 1,865 0,819 0,920 14,238 1,042 2,171
постоянном объеме сV 0,743 0,718 1,403 0,630 0,655 10,097 0,743 1,655
Удельная теплоемкость жидкой фазы сж, кДж/(кг•°С), при 0°С и 101,3 кПа 3,461
Показатель адиабаты χ, К, при 0°С и 101,3 кПа 1,401 1,404 1,330 1,310 1,404 1,410 1,401 1,320
Теоретически необходимое количество воздуха для горения Lт.в, м3/м3 2,38 2,38 9,52
Теоретически необходимое количество кислорода для горения Lт.к, м3/м3 0,5 0,5 2,0
Объем влажных продуктов сгорания, м3/м3, при α = 1;
CO2 1,0 1,0
H2O 1,0 2,0
N2 1,88 1,88 7,52
Всего 2,88 2,88 10,52
Скрытая теплота испарения при 101,3 кПа:
кДж/кг 512,4
кДж/л
Объем паров с 1 кг сжиженных газов при нормальных условиях Vп, м3
Объем паров с 1 л сжиженных газов при нормальных условиях Vп, м3
Динамическая вязкость μ:
паровой фазы, 107 Н•с/м2 165,92 171,79 90,36 138,10 192,67 83,40 166,04 102,99
жидкой фазы, 106 Н•с/м2 66,64
Кинематическая вязкость ν, 106 м2/с 13,55 13,56 14,80 7,10 13,73 93,80 13,55 14,71
Растворимость газа в воде, см3/см3, при 0 °С и 101,3 кПа 0,024 0,029 1,713 0,049 0,021 0,035 0,056
Температура воспламенения, tBC, °C 410–590 610–658 545–800
Жаропроизводительность tж, °C 2210 2370 2045
Пределы воспламеняемости газов в смеси с воздухом при 0°С и 101,3 кПа, об. %:
нижний 4,0 12,5 5,0
верхний 75,0 74,0 15,0
Содержание в смеси, об. %, с максимальной скоростью распространения пламени 38,5 45,0 9,8
Максимальная скорость распространения пламени vmax, м/с, в трубе D=25,4 мм 4,83 1,25 0,67
Коэффициент теплопроводности компонентов при 0°С и 101,3 кПа, Вт/(м•К):
парообразных λп 0,0243 0,0244 0,2373 0,0147 0,0247 0,1721 0,0233 0,0320
жидких λж 0,306
Отношение объема газа к объему жидкости при температуре кипения и давлении 101,3 кПа 580
Октановое число 110


Примечания:
1. Число Воббе — отношение теплоты сгорания газа к квадратному корню относительной плотности при стандартных условиях, характеризующее постоянство теплового потока, получаемого при сжигании газа.
2. Показатель адиабаты — отношение теплоемкостей газа соответственно при постоянном давлении и постоянном объеме.
3. Вязкость (внутреннее трение) — одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. Различают динамическую (единицы измерения: пуаз, Па*с) и кинематическую вязкости (единицы измерения: стокс, м2/с). Кинематическая вязкость может быть получена как отношение динамической вязкости к плотности вещества.
4. Жаропроизводительность — максимальная температура, которая может быть получена при полном сгорании газа в теоретически необходимом объеме сухого воздуха при температуре 0°С и отсутствии потерь тепла.