6.5. Электрические методы защиты

Стальные газопроводы и резервуары, уложенные в землю, подлежат электрической защите во всех анодных и знакопеременных зонах независимо от коррозионной активности грунта.

Электрические методы защиты могут быть разделены на две основные группы:

 

• отвод и нейтрализация блуждающих токов;
• защита вне зоны блуждающих токов.

 

 

С помощью электрических защитных установок на газопроводах устраняются анодные и знакопеременные зоны и создаются защитные (отрицательные) потенциалы. Катодную поляризацию металлических подземных сооружений необходимо осуществлять так, чтобы создаваемые на всей их поверхности поляризационные защитные потенциалы (по абсолютной величине) были не менее 0,55 и не более 0,80 В по отношению к неполяризующемуся водородному электроду, а также не менее -0,85 В и не более -1,15 В — к медно-сульфатному в любой среде. Потенциал неполяризующегося медно-сульфатного электрода по отношению к стандартному электроду принят равным 0,3 В.
Измерение поляризационных потенциалов производится по методике, приведенной в ГОСТ 9.602-2005 (приложения Р).

 

Катодная поляризация подземных газопроводов должна осуществляться так, чтобы исключить вредное влияние ее на соседние металлические сооружения:

 

• уменьшение (по абсолютной величине) минимального или увеличение максимального защитного потенциала на соседних металлических сооружениях, имеющих катодную поляризацию, более чем на 0,1 В;
• опасность возникновения электрической коррозии на соседних подземных металлических сооружениях, ранее не требовавших защиты.

 

Для защиты газопроводов от коррозии блуждающими токами могут быть применены дренажи, катодные станции, протекторы, изолирующие фланцы и вставки, а также перемычки на смежные металлические подземные сооружения.

Выбор того или иного способа защиты зависит от конкретных условий и в большинстве случаев определяется путем экспериментального сравнения эффективности их действия. В тех случаях, когда одним из способов защиты не удается обеспечить защитные потенциалы на всех участках защищаемых газопроводов, применяют сочетание нескольких способов защиты.

Электрический дренаж — способ защиты, заключающийся в отводе блуждающих токов из анодной зоны защищаемого сооружения к их источнику. Дренаж — самая дешевая защита, создающая большую зону защиты (до 5 км). Для защиты металлических подземных сооружений применимы три типа дренажей: прямой, поляризованный и усиленный. По многим причинам чаще всего применяются два последних.

В практике автономного газоснабжения дренаж имеет весьма ограниченное применение, так как не обеспечивает должного уровня защиты. Кроме того, проще предусмотреть рациональную трассу газопровода, исключающую влияние блуждающих токов от рельсового электротранспорта, еще на этапе проектирования.

Катодная защита. Принцип этого вида защиты заключается в катодной поляризации защищаемой металлической поверхности и в придании ей отрицательного потенциала относительно окружающей среды при помощи источника постоянного тока.

Защищаемое сооружение играет роль анода. Отрицательный полюс источника тока присоединяется к газопроводу (резервуару), а положительный — к заземлению (аноду). При этом постепенно разрушается анодное заземление, защищая газопровод. Этот вид применим как для защиты от коррозии блуждающими токами, так и почвенной.

 

Эффективность действия катодной защиты зависит от состояния изоляционных покрытий. При хорошей изоляции сокращается расход электрической энергии и увеличивается протяженность защищенных участков металлических сооружений. Средний расход электрической энергии в год на одну станцию катодной защиты составляет около 500 кВт•ч.
Принципиальная схема катодной защиты показана на рис. 6.2: ток от положительного полюса источника через соединительный кабель и анодное заземление переходит в грунт. Из почвы через дефектные места в изоляции ток проникает в газопровод и по дренажному кабелю направляется к отрицательному полюсу источника, создавая замкнутая цепь, по которой ток идет от анода через землю к газопроводу и далее по нему к отрицательному полюсу источника.

 

При этом происходит постепенное разрушение анода, что обеспечивает защиту сооружения от коррозии под влиянием его катодной поляризации. В качестве соединительных проводов применяют изолированные кабели сечением 25–77 мм2 (в зависимости от мощности станции).

 

Для катодной защиты рекомендуются следующие потенциалы «газопровод-земля», В:
• максимально допустимые от почвенной коррозии — 1,2–1,5;
• от коррозии блуждающими токами — 2,5–9,0;
• минимальные защитные — 0,85 (по отношению к медно-сульфатному электроду).

 

 

Для защиты газопроводов и емкостей резервуарных парков применяются катодные станции различной мощности.
Катодные установки наиболее целесообразны для защиты от почвенной коррозии и менее эффективны при защите от блуждающих токов. Эксплуатация установок катодной защиты сопровождается повышенным
расходом электрической энергии.

 

Протекторная защита — разновидность катодной защиты, нашедшая широкое применение. Необходимый защитный ток вырабатывается гальваническим элементом, роль катода выполняет металл защищаемого сооружения, анода — служит металл с более отрицательными, чем у защищаемого металла, потенциалами, а электролитом — почва, окружающая газопровод и протектор.

Установка протекторной защиты состоит из протектора (или их группы), активатора или заполнителя, соединительных проводов и клеммной коробки (в случае групповой установки протекторов).

Протекторную защиту (поляризованные анодные протекторы) применяют для защиты подземных сооружений от коррозии, высвобождаемой блуждающими токами в анодных и знакопеременных зонах, когда сила блуждающих то-ков может быть скомпенсирована током протектора и обеспечивается требуемый защитный потенциал в соответствии с требованиями ГОСТ 9.602-2005. Протекторная защита заключается в присоединении к защищаемому сооружению металлических пластин или стержней (протекторов), обладающих более низким электрическим, чем металл сооружения, потенциалом (рис. 6.3). При этом суммарные потери металла не уменьшаются, а, наоборот, увеличиваются. Преимущество этого метода защиты заключается в том, что коррозия с более ценной и труднодоступной конструкции сооружения (газопровода) переносится на более дешевую и легко возобновляемую (на протектор).

Ключевая характеристика протектора — его площадь поверхности. Промышленные протекторы изготавливаются из магниевых или алюминиевых сплавов. Во время хранения на складе и при транспортировке протектор дополнительно упаковывают в бумажный мешок, который снимается перед установкой протектора в грунт.

Эффективность протекторной защиты во многом зависит от правильного выбора материала протектора и среды, в которой последний находится. Наиболее часто применяют магниевые, алюминиевые и цинковые протекторы и их сплавы. Протекторы широко применяются для защиты от почвенной коррозии подземных газопроводов и резервуаров со сжиженными углеводородными газами. Для защиты стальных резервуаров сжиженных газов от коррозии допускается предусматривать протекторы в качестве основных заземлителей защиты от прямых ударов молнии. При этом следует руководствоваться требованиями РД 34.21.122-87.

Неполяризующиеся медно-сульфатные электроды сравнения длительного действия используется при измерениях разности потенциалов между подземными сооружениями и землей, определении эффективности противокоррозийной защиты подземных металлических сооружений и обеспечения работы выпрямителей катодной защиты в режиме автоматического поддержания измеряемой разности потенциалов и для измерения величины поляризационного потенциала защищенного сооружения переносными приборами.

 

Электроды типа ЭНЕС (ТУ 47 3994-002-10244915-95) устанавливаются стационарно в грунт на глубину от 0,8 до 3 м с выводом проводников в контрольно-измерительный пункт или ковер, а также могут быть использованы в качестве переносных.
Эксплуатация электродов ЭНЕС осуществляется в диапазоне температур -40...+45°С. Электроды ЭНЕС-1 выпускаются в герметичном исполнении с использованием ионообменных мембран, через которые обеспечивается контакт с грунтом без потери электролита. Ионообменная мембрана защищена от повреждений решетчатой крышкой. На корпусе электрода, выполненном из стеклонаполненного полиамида, закреплен датчик потенциала со съемной насадкой. Электроды надежно работают со станциями катодной защиты, имеющими входное сопротивление измерительной цепи от 10 кОм и выше.
Изолирующие фланцевые соединения (ИФС) — дополнительное средство защиты газопроводов от коррозии, использующееся совместно с устройствами электрохимической защиты.

 

Защита газопроводов с помощью ИФС заключается в том, что газопровод разбивается на отдельные участки, уменьшая таким образом его проводимость (и силу тока, протекающего по газопроводу). При разбивке газопровода на участки (секции) упрощается решение вопроса о защите их. Обычно ИФС (прокладки между фланцами из резины или эбонита) и вставки (из полиэтиленовых труб) применяют для отсечения различных подземных сооружений (газопровод и теплопровод в котельной, газопровод и водопровод в дом и т. п.) друг от друга, а также для разъединения сооружения по принадлежности.

Установка ИФС на газопроводах чаще всего предусматривается на стояках вводных газопроводов к потребителям, где возможен электрический контакт газопровода с заземленными конструкциями и коммуникациями; на подземных и надводных переходах газопроводов через препятствия (на вертикальных участках), а также на вводах (и выводах) газопроводов в ГРС, ГРП, ГРУ. С каждой стороны от ИФС устанавливаются контрольные проводники с выводом на поверхность.

Электрические перемычки. Этот способ защиты применяют в случаях, когда на одном сооружении — положительный потенциал (анодная зона), а на другом — отрицательный (катодная зона), то есть их электрическое объединение перемычками приводит к тому, что на обоих сооружениях устанавливаются отрицательные потенциалы. Такие перемычки применяют для объединения локальных и магистральных (дальних) газопроводов, а также при прокладке по одной улице или в одном районе газопроводов различного давления, например высокого и низкого. Широко практикуются перемычки при совместной защите различных сооружений. Электрические перемычки между газопроводами, выполненные из полосовой стали, должны иметь изоляционные покрытия весьма усиленного типа.